Hypoxia and TP53 deficiency for induced pluripotent stem cell-like properties in gastrointestinal cancer.

نویسندگان

  • Hiromitsu Hoshino
  • Hiroaki Nagano
  • Naotsugu Haraguchi
  • Shimpei Nishikawa
  • Akira Tomokuni
  • Yoshihiro Kano
  • Takahito Fukusumi
  • Toshiyuki Saito
  • Miyuki Ozaki
  • Daisuke Sakai
  • Taroh Satoh
  • Hidetoshi Eguchi
  • Mitsugu Sekimoto
  • Yuichiro Doki
  • Masaki Mori
  • Hideshi Ishii
چکیده

Induced pluripotent stem (iPS)-like cancer cells (iPC) by the introduction of defined transcription factors reduce the prevalence of the malignant phenotype of digestive system cancer cells, but the induction efficiency is low. The role of hypoxia and TP53 deficiency in iPC cell generation remain unclear. Cellular reprogramming was performed by retroviral infection with OCT3/4, SOX2, KLF4 and c-MYC of wild-type HCT116 colorectal cancer cells and mutant TP53-deficient HCT116 cells. Cells were cultured in normoxia (21% O2) or hypoxia (5% O2) for 30 days after transduction, and the response to hypoxia and comparison of cellular proliferation, invasion and tumourigenesis before and after iPC cell generation were studied. iPC cell generation from wild-type HCT116 cells in hypoxia was approximately 4-times greater than in normoxia (p<0.05), and TP53 deficiency increased conversion efficiency significantly in normoxia (p<0.05). Significant involvement of hypoxia-inducible factors was observed in an immature carbohydrate epitope, Tra-1-60+, colony formation. Generated iPC cells exhibited multi-differentiation potential. Although the iPC cells in hypoxia exhibited reduced proliferation, invasiveness and tumourigenicity, TP53 deficiency in iPC cells resulted in higher tumourigenicity than in wild-type cells. Both hypoxia and TP53 deficiency increase iPC cell generation. TP53 deficiency can also result in deleterious mutations, whereas hypoxia may impact molecular targets of epigenome normalisation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors

Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 40 5  شماره 

صفحات  -

تاریخ انتشار 2012